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LECTURES ON DIFFERENTIAL GAMb. Y _ .
L PONTRYAGIN e

lecture 1 - . . 3
—_— PEOST .- 1IN

We are going to talk atout the problem of the pursuit of one

controlled object by ancther controlled otjJect. The mosti impertarct

feature of the problem lies in the fact that the future behavior cof
the object being pursued 1s not assumed to be known. In realizing
the pursuit we must start from information concerning the state of
the objects at a given time and the knowledge of the technical
potentiaiities of these objects.

Here we denote the state of an object b& x and essume that the
controlled motions of the object can be.described by the ordimary

differential eguation

-

(1) ) "~ x = £{x,u)

vhere u is the control parameter.

x consists of {wo paris:

X = (xl,xz) *
x = geamet—ical position

” X, = velocity.
2

Equation (1) gives the potentiality of the object by describing

all possible motions of whick the object is capable. In order to give

the concrete motion of the object, we have to specify its initial state |
X, et some moment to uné¢ then prescribe the values of the control u

as a function of time.
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In & pursuit problem one considers two objects x and y; the
potentiality of the secord object is described by the differential

e wation
(2) ' ¥ = gly,v) .

Similar to (1), here v 1is s control parameter and y consists of
two parts y = (yl ,y2) » vhere y, denotes the geometrical position
and Yo denotes the velocity or the second object. .

We assume that Yy moves in an arhitrary manner in accordance
with (2) and that x aims to catch vp with 't in as short & time as
possible, using all its technical capabilities, that is moving according
to (1). The pursuit is considered to be completed at the instant vhen
x and y ~oincide geometricaliy (i.e., x = yl).

The problem is: if at eacl. instant of time one knows the states
x(t), y(t) and v(t), to prescribe the value u(t) so that the pursuit

is realized in the best way,

&

= u(x,y,v) .

There is a different viewpoint to the problem: the problem of

evasion, vhere v(t) is chosen in order to avoid ending the game,
v = v(x,yu) .

Now we reformulate these two problems, the pursuit problem and

the evasion problem, as follows:
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Define z 2 (x,y), durect sum of x ard y.: We call 2z the

‘state of the game % = F(z,u,v) is the comtiration of (1) and (2).

The game ends when z hits the subspace M = {2z € R]xl = yl]

of the phase space R.

The problem of pursuit is to find
u = u(z,v) in order to end the geme.
The problem of evasion is to find

v = v(z,u) in order to prolong the game.

. .:s Very many papers on the pursuit problem have been published,
but not on the evasion probliem. I will consider the evasion problern
in the next lecture. Now I will only talk about the general formulation

of the problems.

In order to obtain some concrete reults, we will restrict our-

. Sclves to linear problems. The differential equation of the linear

.differential game is written as follows:
Z=cCZ-U+V ,

where ¢ 3is the n Xn matrix, we?P, veQ, and P, Q are convex
and compact subsets of R. M is defined as before and let I be the

subspace of R orthogonal to M; L LM and R = L@®HM.
M

R
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If ACL and BCL, ve say that A is smaller than B iff 3 a

vector a such that a + A< B,

a

translation

and e denote it by A& B.
By = we denote the operator of orthogonal projection onto L.
x 1is obviously a linear transformation. ILet us consider the linear

i Te : - cps - - R
map xe , wvhere T 1is any positive number, and define

T
P fxe P

Q.tl___\ne'th-

In order to get a positive solution to the pursuit game, the

control parameter u has to have certain “superiority” over v.

) Similarly, in order to prolong the game indefinitely, v has to have

" certain “superiority” over u.

Proposition 1. Assume there exists 'ro > 0, such that

ain(P,) = aim(L) = v and Q &P, for 0<T< T« Then there is
& positive solution to the pursuit game in the sense that there ic &
subspace  with the property that if L € 1, there is a finite

t(zo) such that the game ends before t = t(zo).
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Proposition 2. Assume there exist 'to >0, u>1 such thati

dim(Q.) = dim(L) = v>2 and uPT@ Q; for Te (0,7). Then for

each z_ M IvoVt: 2(L) ¢ M; in other words, the game never ends.

If the conditions in Proposition 2 are satisfied, z{t) can be

very close to M. We want to estimate the distance between z(%t)

and M.
Define
¢(t) = distance between z(t) and M
= [oz(t))]
and
n(t) = distence between z(t) &nd L
= [z(t) - o(2(t))] -
T 4 )

We bave, under certain conditions s

. )
t(t) > __C_S.LQI__ )
T q))”

vhere k and m are integers and ¢, k, and m all depend on the

- game dtself.

Finally I want to point out that however complete the information
concerning'the state of the second object at & given instant of time
may be, it is necessary to sperd some finite amount of time in calculating
and evaluating this information. Therefore the above formulation is
not realistic. The way out of this difficulty is as follows: we can
make the pursuit, not of y itself, but of the position in which it
vas found a short time beforehand. Thus u(t) is chosen as a function

of x(t), y(t-a) and v(t-A), where A 1is a small positive number.
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Lecture 2 _1‘
Review: Consicer the linear differential game
{1) ZT=Ccz-u+V i
z € R FEuclidean space y
c: R-R :
ueep
> convex, compact subsets of R
veg
dim P and dim ¢ < dim R
o
M i
L1¥ .:
. o oW °
. R=L@®M !
%
. Projection it R - L i
T T :
P=xecP,Q=xecQ

convex, compact

T

‘o

-Let us consider the foliowing

Example:

Question: If 1) E is a vector spece, dim E = v > 2,

2) x 55 Y € E are the geometrical positions ¢f the pursuer and the

evader, 3) x ¢y satisfy

(2) X+0x=a, ]alSp,
(3) y+By =0 bl <o,




vhere a srl b are contros vectors and O,B,p,0 >0, U) the game
ends when x = y, then what are the conditions for ihe pursuit problem

end the evasion probiem to have a positive solution?

Ansver: If p > ¢, the pursuit control has sup-riority over
the evasion control; then the pursuit gane han a positive solution.
On the other hand, if p < o, the pursuit control hes inferiority

over the evasion control; then the evasion gare has a positive solution.

¥roof: {x,x) is the phase vector of x

(y,¥) is the phase vector of ¥y
(x,%,7,¥) is the phase vector of the geme.

The ’state variables (x,X,y,y) can be reduced as follcws. Let

N
I

X -Yy

-»
2 =X

.3

z = (21,22,23)

Iy
]

zi €EB, i=1,2,3,

“and
R = {(zl,ze,zj)] s

and
= (x-y)" =%-y5 = 22— 20
.2 * A 2
2 =X=-0Ux4+a8=-Uz +a
3 = -$25 +b

and
u = (C,-a,0)
v = (0,0,5) .

v " gty tn b =

PR,
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Hence
P= {(O,-a,O), Ial < p)
Q = {(0,0,b), |v]| <o) i
M= (zlzl =0} = ((0’22’29)} v 22, 2 e x® :
]
L= [(21,0,0)}, v ek :
1.2 1 ,av4.1 3
(7' ,2%,2°) = (:1,0,0) & 2 ]
o 1 A
c= |0 & o
0 0 -B
In order tc compute =x etc (-a\ » we solve the fcllowing homogeneous
0 ;
+@ifferential equation i i
- Z=cz,
i.e., ‘
. it o202
Therefo:e, ;
zB(t) =Pt D )
o
22(t) - Ot z2
o
él(t) =0 2 _ Bt S
o o
-at -pt
1 l1-e 2 l-e 3
) = -
z(t) =2z + = z, B 2]
et o, lze L 1- e Pt
- 3 ’ B ;

e s T L
L M,ar,qugz_-,;_
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o 0 -aT . 4
xe (- ) = (-a) . ”1
o/ . - f,
Therefore
-aT
l-e
P = {|x] < o p)
gt
l1-e ;
= < o} . ;
QT [|y| ﬁ ]‘
For T <<1 ,
’ é
Pp={|x| <70+ -] |
Q.,=(ly|5‘rc+---} . ,
] E
Therefore if p > o, QT@ b S then 3 a solution to pursuit prcblem, i
Lo, Vs s . ) i
. gnd*if o > ps 3 u>1 apPT-\*; Qs then 3 a solution to evasion problem. i :
. i :
1
é
:
E
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lecture 3%

Review:

P ]

E = Euclidean vector space

dim(E) = v > 2

X,y €3
X+Gx=a, |al<p 3
:::;,’ positive pumbers : 3
§+65=b, ol <o : ;
1 .
z = Xx-y
2 .
z- =X
z)‘._.s' .
.. r zl -
' 2
z=| 2z
; 22

R={z = (21,22,23)}

-

M= {(0,22,25)) = {{22,23))
* L= 1(24,0,0)) = ()
- L=F
P, = {|x] < p7 2 eeed .

G = {Iyl.s OT 4 <o2)

Let us cornsider the 7cllowing two cases.

1) o >p , then the evasion ccntrol has superiority over pursuit

control .
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Proof: |z7(t)] = ¢istance betveen z(t) and M(t).

ft

') v
l(zh(t):zi(t)ﬂ distance between z(t) and L(t).

2
120 > el (0)] _,
(1 + [(22(1),27(t))])

ir !zl(o)l < g, vhere € >0 depends on the gune, i.e.,

x(s) - 3()] > —elx(0) y(o)f° 5
(L + J(x(), 51D

if Jx(oj-y(0)] < €.
2

- . 2 . .
fonsiaes 27 +7z" = a{t). The solution is

o e .
) t
za(t) = e-at zi +f et a(t-T)at .
o
-Gt
Ae t 500, e zﬁ—)o, S0
2 t ot
z°(t) = /] e a(t-T)ar,
o

Similarly

Therefore, |x(t)-y(t) > 7|x(0)- y(0)|2, for some 7 > 0, vhen
Ix(O)- ¥(0)] <e.

It |x(0)- y(0)] = € , the above is true and we see that

€ >-7e? .

.
0
H
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If [x(0)-¥(0)} > € ana Jx(t)- y(t)] > &€ For ail t, then
Ix() -y(t)] > 7¢°.

If [x(0)- y(0)] > = end Ix{t)- ¥{t}] = &€ for some t, then,

2 Basy A By prnras AP O § W o A OF
04 205 LY P 3 >
.

o apiye uau
Nant

by the above result, we have jx(t)- v(t) > 752. Hence we get the
fullowing two cases

(1) 1r x(0)- y(0)] > &, then Ix(t)-y(t)} > 7€ .

(2) 1t ]x{0)- ¥{0)] < &, twen {x(t)- y(¥)] > 7}+(0}- ¥(0)]°.

TR

In either cas= the gsue may last forever.

-y

2) p>o0 . let us consider g ané % As shown ebove, g
i
cherpeterizes the range of tae velccity of the pur.uer, and % .

characterizes the range of the veiocitvy of the evader, fherefore,

‘5 < % = the game may le.? forever,

G

B =2 the game may be ended.

§>

My next lacture will be devoted to the evasiocn problem.

In order to show Lhow P and Q. are ccapared to judge whether
the gene way last forever or may be ended, we solve the foll'oving
equation .

z = cz + v(t) - u(t)

]

(*)

z{0) z,

end look at wxz(t). The solution to the corresponding homogeneous

equation Z =cz is z(t} = e®c. Let the solution to (*)

2(t) = e*® e(t), then

T T Nk g L e ® 8 e
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et = v(t) - u(t) ' ;
. ~te ;
& = e ““v(t) - uft))
Y s
e(td =z + 4 « (v(s) - u(s))as
. )
)
't t,. t -80C .
4] = e o+ o ] ) - wloas
o
: . Te -
= etc ZO + I (\e‘tc 's’(t"t)‘ e ¢ u(t-'l'))ut
o
tc ¢ e e })es
xz(t) = xe  z_ + J (xe™ v(t-1)- x e u(r-T))ar
o
xe s v(t-T) eQ |
- . :
13
xe” ult-1) € P . ) ‘:
[ '.’.;
a v - é
i
?
b "
|
£
&
f
i
£
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Lecture 4
Consider the linear transformaticn neTc: R -2L. Let us denote
it by
1 1
Gl, 82, vt , 8

(1) g ={ - : .

Bach of the elements is an analytic function of T for small 7. It
is wcll known that g, is “equivalert” to a matrix G(T) , in the

sense that

(2) g, = A(1)6(T)B(T) ,
. /‘ . )
where
Kl \
o
T Txa .
(3) q(_'r) . E .. Txp ,
o -
* 0 "o

Ky SKy oo <K

and |A(0)] #0; |B(0)] #0 (A, B nonsingular for small T), where

|a(0)]| = det A(0). Lev
o(t) = A7(7)

o(7) = 37H(7) ,

then

B

o v

mraens o oy

e
v A

panamu
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(¥) 6(7) = c(7)g.n(7)

icto)l #0, Ine) =0 .

Since each g; is analytic, we can write

»

gs = a‘l’K +'bTK+l + eee ,

vhere a # 0. 3

The interchange of two rows or two columns can be expressed as

- post-multiplication by a uon-singuiar matrix, for instance,

& & e
gfgglo

1 1
& K
2 2
€& &
Consider the cperation
1 1 1 1 1
6 &|[1 r] [&:8 +bg]

2 2 2 2 21"
g 8J10 1 & » & * bgy

1

W

“Set gé«l-h_gi:o, then 1
oo o2

T
&

1 1l

& &

Hence the matrix of the form 2 o} can be transformed into one
& &

of the fom [ ] by multiplication by & ncn-singular matrix.

0
2
&

Ko T

@
t
t
B
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By repeated application of the preceding ob:-;ervatibns and similar

ones about pre-multiplication, we see -hat g._. can be transformed

T
into
gi 0 o ... 0]
o .62 o .
€. = |. . p * .
T 0
) gp .
. 0
| 0 © 0]
Consider the operation
1 1 K
o .3 & 0 h O hgl 0 T 0 -
0 gg 0 1 (¢) gg 0 gg_

gi = TK(a + DT + «-2) .

"Iet h =1/as+bT4 ... .

Therefore, the above claim is proved:
g, = A(T)s(7)B(T) -

Let y = A(T)x, then p < {%l— < q, vhere p and q are two positive

constants.

Theorem. L-t P = {all polynomials f£(a,B)|in two variables
such that deg f = m, with at least one of

the coefficients equal to +1 or -1},

Armr e Seveyare @

AL b Kk e wwm P " ;v':l‘.s

mmo s o




A= ((a,p)|e <aca,, B <B<B),

and

A(B) = a square with dimension b.

Then = 5 >0 and 0¢>0 > forall f e P there exists A(%)

. (depending on f) such that

|£(a,8)| >0, V(a,8) € A(B) , and V £(a,8) ¢ P .

Proof: Consider the compact subset Q © P defin=d by

Q = {£(a,B) € Plthe absolute value of every coefficient < 1) .

ooyt

It can easily be shown that the conclusion is true for P ‘Treplaced

by Q. Then consider arbitrary f{(a,B) e P-Q . Let

a = maximum of the absolute values of the coeificients ef 1(Q,p),

" then “a > 1. Then

f(‘:;ﬁ) €qQ .
-Hence
EFetlse . vee) e as)
Therefore

If(a,B)I > ao > 0, Vv(a,8) € A(B) .

This completes the proof.
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18

{f(a,B)‘at Jeast one of the coeffiuvients is

+8 or -a deg i = 1},

35>0 end 0>0 3 forall f € P there exists 4(S) such

If(a,ﬁ)l > as ,

V(a,ﬁ)_ € A(5) , enl vwf(o,p) e Py -

e i
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Lecturg_?_

Theorem. Consider two rpolynomials

2 k k
x(t) =a + at +att + e rat v Ot

2 y 4 y 4
y(t)-b+blt +DLT 4 eee + Dt 4 B
Suppose

gl <k, oy + ¢ <k

byl <x, [p,+8l<x,

-,

where K is a positive number. Then there exists & > 0 such that

~ -5t

ix(t)l + !y(t)! > c(]alz +.JPlk)

Y {a,p) e als

% pn?®
™
=}
o7
et
m

ey
o

-

ot
(S}
*

Remark. (x(t),y{%)), te [0,1] defines a curve in the (x,y)-plané.
x(t)| + !y(t)l is an estimate
of the distance between the point

(x(t), y(t)) and the origin (0,0).

Proof. let us denote the discriminant of the two polynomials
x ard ¥y by

b= s(a:ﬁ) .

e e & s ap o ot e
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From algebra we know that if § =0, (x,y) pssses through (C,0),

if ##0, (x,y) does not pass (0,0). We now compute #(c,B).

2,...,t"'1 and

3 Multiplying tke first polynomial by 1,t,t

multiplying the second polynomiel by 1,t ,t2 yeoe ,tk°l , we have-

8 + alt + e + aktk + atk+ O-t‘“+1 + e + O-tk“"-l

0+at+at2+ u-+atk+l+atk+l+

X--2-1 !
1 k ‘

L +o-t =xt

O4 eoe 40 + atz-l +oeer 4 ak‘ku-l +atk+z-1 - xtl-l

3 . and

babts oo +b,tl 4 ptdy s okt

oy 1 2 - 1
- O+dbt + oo + bzthl + Btz+1+ ceeg 0851 vt ;
) Ot vort 04 b 4 s pp gL pelthel L gkl

Ve c;nsider the above equations as a system of simultaneous algetraic

- - equations for the variables 1,t ,t2 seee ,tk+z-l. From elementary algebre

we see that : *

1=

b4

@i

"
vhere g is the coefficient matrix éand § is P with the first column

2-1

k-1
replaced by (x,xt,...,xt” ~, ¥,¥t,..., ¥yt ).

'




k £

8(«,B) = atbki-_ba 4+ o

Using the lemma we mentioned in the last lecture, we obtain

[a(c,B)| > crla}Je , if (@,B) € a certain square A'(5)

18(a,B)| > cr]blk , if (a,B) € a certain squsre A"(5) .

PR F A I (la]®+ I®) g— , if (a@,B) € A(B) ,

vhere A(5) = A'(8) or A"(5) according to vhether iar" > lblk

or lall‘c < [t]E. then we have

~

8
. >1.
- (al*s o193

‘since |t] <1, ve have [xt!] < Ix|, |yt?] <|y|. on the other

band, any minor of order k+£-1 of @ is bounded by

(ke2-1) ML

E ) 3_<_ (£]x] + klyl)(ku-l)!l(k”-l

T T

A

W:Tmnwm‘,m,. o
\
|
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which implies

Consequently,

for some constant C > O as desired.
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L¢ cture 6

Here we only consider the case where &r is a square v X v

matrix
g, = A(T)e(7)B(T), det A(O) £0, detB(0) £0
K
1 0
Ko
G(T) = T .
0 cqV

A simple calculation yields

t
[ A(Tt)e(T)at = A(£)G(¢) ,
[e]

]
Y
s Ve

vhere det A(0) # 0 end

K +1
tlA

~

. G(t) = t .

(¢ t

Consider a vector ¢(7T) with components e satisfying l@il <c7,
c ? 0. Again a simple calculation yields
t

5 a(oe{Tie(T)at = A(£)5(1)19() ,
o

vhere ](‘p‘l(t\} <ect, if 0<t <p, p>0, vhere p depends only on

A(T).

g Ve Y PR AR R ¥ s b s ST




Now let us continue the discussion of the dif':f‘erent.ial game.
VWe assume z(tc) is very near to M. Our purpose is to prevent
the ending of the gsme in the time interval [to ,tl]. Let us assume,
without lo2s of generality, to =0 and tl = g,

We nov rewrite the equation of the game as

Z=cz+v' -v', u' € P' and v'eq',

o2 B A

in order to save th2 notations v and u for later use.

Rzcall that a ccndition for the evasion problem to have a sclution

is that dim(sx e'® Q') = v. We make this assumption here. Hence,

WO 5 A ARV WAL e b W o

. v am(Q'y > v .
We will consider only the case dim{¢') = v to illustrate the idea E
of proof. ¥

Obviously, 3 affine subspace u' such that P'C U’ ,

_@in P' = dim . fhen 3 u € U' and a linear subspace U C L

- . U'=uo+U-

If ve choose u € Int(P'), then P' = u +P and O P. Similarly,

3 affine subspace V' 3 Q'€ V' and 3 v, € V' and a linear subspace

c ' o L «
VEL >V vo+V and Q vo+Q
Define

— f,r(u)=xeTcu, Vuedu,

gt(v)=xeT°v, Vvev.

B
3
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Noiice that 8, is non-degenerate (non-singular) maprping: VL,

by our assumption

aim(g’) = v = eim(L) , for T>0,

—

T T ¢
urx e CP'ExeCq = pf.r\P)'\*.“. ST(Q) .

Define
-1
h'r = 8 f'r s T>0.
Hence

Rotice that each element of g;l can be axpressed in the fcrm

- . £ - Kl
. ‘:-’ aTK +bT+ 4 oo »

where K may be negative. ‘fherefore h'r might have a similer form.

If this is the case, JueU 3

]h,t(u)l -0, as T-20 .
%

But phT(P)(_*; G and Q is compaci, sO we obtain a contradiction

and thus we know that h,‘(u) is an amalytic function of T_even
at T=0 sand h,‘, has a definite limit et T = 0. Hence it is
pcssible to choose v > pho(P} C@. But pho(P) cQ => ho(P) c %C Q,

so we can find W € V with components lwi | <7, 7>0 such that

%+VCQ .

Hoence

ho(P)+wCQ .
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Let us assume we have a pursuit control. Consider the evasion

r control v(t) = ho(u(t)) +W .

First,hovever, it is necessary to do the following computation

g (v(+-1)) = £(u(t-7)) = g(v(t-T) - b (u(t-T)))

£o(b (u(t-T)) + ¥ b (u(t-7)))

; g(v- (hi-h Yu(t-1)))
= A(T)G(T)B(T)(w- (b -h )(u(t-T)))

= A(7)e{T)(%(7) + ¥(t,T)) :

J A(T)G(T)(%(T) + 9(t,T))aT = A(£)E(t)(w(t)+P(t)) .
o)

gy

This will be used in the future.
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Libiw)

o




ST TEEE T GG D U R e M maen o« e e - - . -~

27
Lecture 7
As shown in the last lecture,
t ”~ ~ ~
J (e (v(t-7))- £ (u(t-1)))at = A(t)C(t)(w + @(t))
o
wz(t) = x eTc z, + f (x e'c v'(;’.-‘t) - X eTc u'(t-1))dar
o
Tc t Tc Tc .
~ne 2z + J(ne (vo+v(t-'r))- ne (u°+u(t~'t))d1'
o
Tc t Tc t
. =xe 2z + ) xne (vu)ate [ (g (v(t-7))- £ (u(t-1)))at
o o :
: TC t Tc ~ A 2
ST =rxe z, + I xe (v,-u )at 4+ A(£)G(L)(w+ (L)) .
° o
For t <<1, K(t) is non-singular; so
(6) AY(t) x 2(t) = w{t) + G(t)(w+ B(t)) ,

* where+

t
w(t) = K-l(t)(r. e'® 2 + [ x eTc(vo-uo)dT).
o

Note that ®w(t) is a linear function of z - Since K(o) is ncn-
singuler, ve can take a system of coordinates in which A(c) =1,
then ve have «{0) = xz . Observe that (6) contains v scalar equations.

Any one of them can be expressed in the form

x = f£(t) + t5u(t) + tk(oto + ¥(t))
polynomial of degree Kk
£(t) + £(a + o (¢))

£(t) + t* a,

5 e e s

aeh o a8 Syl N
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where
a=ao+al, a1=7(t)+*(t):

_ k
f(t)-a+alt+---+akt .

Consider the mapping z - (&,1), where ¢ = |n(z)] and 7 = |z-x(2)]{.
In particular, z_ - (go,qo). Since we assume z i< very close to
¥, we have §o < 1. Hence we obtain the following inequality for the

coefficients a;

lailso(l'*’lo) ’ 1=0,..0,k

or

i‘;di'::soxr[e p > 0. And analogously ve get
(
o, (#)] < tol2 + )

p >0, the same p as above. It is necessary to assume

2]
4 < ()

=I-n’

Y

9°>0 .

If ©_ is small enough, then al(t) sma’l enough. @  Wwill be chosen

°
(%)
later. Now 6, is regarded &s a fiked number. Let O = -f-;g;r .
o

And the coefficient of the last term in the above polynomial of
x satisfies

lay +a] <plL +n) .

Now let us introduce some new terminologies,

z€lL, 2 = (21,22,...,zv) .

i

-ty o mmiws
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It is easy to see that I p, q 3

|ZI>P|zi| P) Vi=l,...,v,

and

!zil > qlzl s for at least one i

Consider the instant t =60, '
x = £(6) +ae® .

We consider two cases:

1)  1(e) >0, Tcac<y, x| >%é",
Y S .
2) f(e) <o, ycac-L, x| >Ze".

¥We hsve ditfferent controls for these two cases. Now we have

s ge) > % 6"
and
A
g(e) > m
1+ )
We now consider the seccnd eguation
j/
y=g(t) +t8, £<k.

Applying the theorem we mentioned in Lecture 5, we have

i) fgagy, r<pgyas

2) '75“5-%, -y<B<7yb". (

Ao Shran b st Lmmt e ar s s v vme et e ew smeete

P e m e e g —
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Therefore &', 8" >0 3

e, (fal® + b}

Kk+£-l

IxI + Iyl >

T PO AN

e

Let ® = min(5',5").

Lkl

¢ (lei* + 019
x| + Iyl >
' 1(‘(4—1‘-1 ’

O ath bl L0 DLl

vhere K 1is an upper bound of the absclute value of the coefficients

of the x,y polynomials.

s 1o o 20
xi + [y . .
o T el e T

IR 4 (an estimate of g) .
Hence x .
. ¢z
e(t) > T -
(14 no)ak *

T e s
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Lecture 8 ~.‘.

At the end of the last leciure we got the two following inequalities:

(1) £(0) > —2 '
(1 +1)
k
(2) b(t) > —— 20—
(1 + q )2t

But these inequalities are not interesting since they relete ()
or tf{L) with n, =nd not with (t).

To remedy to this, we will use tne following relation:

1aqt) >s(1+ r;o) for some S.

Thiz can easily be shown by vsing the fact that for t being small

z(t) - 2(0) is bounded. ‘Then

’ k
A S A S €

. @+ ) (s )0 (e (o))"

with €= Sk)\. To interpret this result, consider the hypersurface

£ = —E .. It divides the phase space in two parts:
(x +9)
the interior part S = {zlg < ...._..E._}
- k
(1 +9)
the extericr part S, = (2]t > € .
+ k
(1 +q)

Qur rasult tells us that at the end of each evasion process 2z(6) € S+.

rem ey imbaer mnidwtan aa o
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If we start outside (i.e., in S+), then as long as we are in S+,
ve don't worry. When we reach the hypersurface S we turn on the

evasion contrcl and we take this time as the origin of time. Then

—t
-
(1 +19)

By inequality (2) we have

ZOGS ’ i-e., §0=

c€k
O

(L +1)

e(t) > 5
k" +2k-1

and by the semc argument which wasused to get (3),

ced”

2
(1 + p(e)k *31

£(%) >

:Ek

1+ 'q(t))k2+2k-1

Let us introduce the surface S8': ¢t =

where S_:_ and S_: ere the exterior and the interior of this surface §°.
So dun_ng 2l1 the time we apply this evasion contrsl we know that our
point: rewains in S;_ ;3 &t the end of th.s interval of time we have
(1) again and so our point is back in § _, and we can do tht? same
maneuver again.

Now what happens if zZ, € S_. Then, during the first interval
of time {0,8] we have, from (2),

c gk c'gl;

070 S
2k-1 =~ 2e-1
(x+7) (1 + ()™

g(t) >
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o svaidelid o

This means that there is no capture betwecen time 0 and time 0,

R N s ALY

and that at time © we are back in S+, and we can act as in the

rvas

first case.

e

These iesults are more precise than the one staled in the first
lecturs. We can resume them in the following result, which is wenker

and true only if £ <E,

cgk

070

t(t) > = .
(1 + n(e))* *2

o st S

But the proof is not yet completed: there remains to check that’
the?;_isum'c;f the different intervals of time 6 is infinite, in other )

. vwords, that we have considered the problem for every t > 0.
. e
. R _ o
© is defined by € = s N

[ e

> wvhere 6 is fixed.

If T remains finits, then © dis bounded from beleow and the
series J' 9 diverges.

?[f 1, becomes infinite, then as 1 ist at most linear in 6, the
series still diverges.

The proof is yet completed. . i

Coments. The solution was beased on the maneuver superiority of the

evader, but the pursuer cer have a speed superiority. 1If at the beginning
of tne game they stand very fer from each other, the evader cannot prevent
the distance to decrease and the evader to pass very near from him, but
then the distance will increase again.

it is not clear why our estimates are bad when 1y is big. 1In the

example where 71 represents the velocitiics, this seems intuitive.
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Lecture_g

The Pursuit Problem

General remarks on the non-linear case

As previcusly, we have a euclidean vector space R, and a
vector z, 2z € R, whose motion is given by 2z = F(z,u,v). The game

is completed when z e Mc R, M is a given set in R.

Rules: Three types of rules can be used; depending on the avéilable
information at time t to choose u{t).
1) The state only is kxnown: u = u(z).
2) The state and the opponent's control are known: u = u(z,v), -
:.-# vhere v = v(t)- .
3) Tne state is known, as well at the opponent's contrcl history
for a short interval of time in the future: u = u[z,v(s)],

where t <s<t+g €>0.

The third rule has also a practical meaning. We shall use it later.

‘“

Questions: For any of these three different games there are three
questions to auswer:

1) Stérting from a given L is it possible to compleée the game?

2) Find the time T(zo) -#hich is sufficient to do so. This numver
T will be called tne estimating number, cr, regarding it as 2
function T(z), the estimating function. It is the interesting
thing %Yo find.

3) 1Is this T(z) the best possible estimating function?
If there is no positive nunber & such that T-8% is also an

estimaring number, then T is said to be optimal.
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This optimality means that it is possible o find a centrol

history v/t) such that the parsuit will last a time arbitrarily

close to T. I% must be understood thzt this history caa depend

on everything else: u, thepast histcry of the geme,... . If
thiere exists an evasion ruale such thac the process lasts exactly
the time T(zo), then this function is said to be a "streng

optimal" estimating function.

Thus we have defincd three coicepts: the estimating function, the

-

optimal estimating functicn and the strong optimal. Thereafter we shall

consider only the first oné.

Constuction of the fuaction T(z)
- : Given the evader’'s control from zexro to &€ as

v o= 8(t), o<t<e,

— e

Consider some control u(t) for the pursuer.

.

We place these control histories in the difierential eguation of

)

R TR i TR

the ga 2:

2 = F(z, u(s), 7(t)), with z{0) = z -

This gives & solution which we call z(t) and, in particular, this

. TR IWIWT XYY/

gives a z(e) = z, vhich depends on the u(t) we have chosen.

Now consider the values T(zo) snd T(z,) of the function T(z).

’

(Saac b it add

The difference T(zo)—E(zl) depends on the history uft). 4mong all

these possible histories, choose the one that maximizes this difference.
call it u(c)

a{t) = arg max{T(z )-T{(z.)] .
. u(' . C i

el ae $0
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If for this function 1u(t) :

TNTI TR T T T T

T(zo)-T(zl) >e,

» werw M
SN L ik N A Rt b IR a e e leertlat LR 0

then T(z) is an estimating function. This also gives the way to

At

construct the test possible u. ?

.1
3 Comment on Isaacs' work

ot B

Isaacs assumes that T 1is continuously difrerentiable, and

e e

that it is a strong optimum. Th~n letting €& go to zero, our relation

becomes his "main equation". But there are cases wuers T does not

anreene, semine

: . fulfill these conditions.

Remark: In the case where the third rule is used (v is ¥nown a.
time € in the future), the function T(z) we are looking for might
> depend on €. We require that the finction we find be indeperndent

‘ of & and hold for every positive &£. For the linear case we are

going to construct the function T(z) a priori, without the help of 3

an equation, and then show that it is an estimating funétion.

e d

—ryi

Linear cese.

e

We considar now the case where the differential equation of the

game has the form

ekl

Z =C-V-u,

B i sttt i o+ 4 SR AE ORI LIS R
At Gl tenBUR S i

where ve V,uelU. V snd U are compact convex subsets of R.

Completion is obtained when 2z e 1 arbitrary convex closed set.

R. Isaacs: Differential Games, John Wiley and Sons, 1955.
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We shail ncw construct , for positive 1, a set M_ such that Mo = Mj

and M’t is a continucus function c¢f T and cousidering, far a given z,
- T2 . . .
the expression e ~z, we focus our attention on the inclusion (1);

verified or not

- T
M .
(1) e zeM

We shall prove that 7T(z) = T,» where T is the smallest 7 such

that (1} is true.

Construction of M't' Particular case: M is a vecltorial subspace.
As previously, L is the orthogonal complement of M, = is the orthog-

onal projecticn on L. We shall construct a subset wT < L and define

N
M ={z: nz ¢ WT} with W_ = {0}

T .

so that relation (1) is equivalent to

™
e 2Z€ W_i .

Iy

Definitions: Iet us define several concepts in set theory.

Generalized addition: Given two cunvex subsets A,Bc L and two

numbters O and R, define

D=aA+8B by Do {ax+py:ixszA,yeB}.

It is clear that D is convex. If A and B are compact, D is compact.

Notice thet for a =8 =1 we have the classical sun and for o = -8 =

we have the algcbraic difference.
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Distance between two sets: Iet Hr denote & ball of center at

zero and radius r:
H A {x: [x]] <r)
and consider the two inclusions, always verified for some large enough

AcB+H
T

BcA+H .
T

We call distance between the sets A and 3B the smallest r such

that these two inclusions held.

L"’fIntegral: L being a finite dimensional euclidean vector space,

and K the set of all compact subsets of L. (But #¢ K) XK is not

a vector space, as no set except from {0) seems to have an additive

inverse. It could probably be imbedded into one by considering formal

differences

‘e

A - B, A,B € K.

The fact that this is a Banach space should be checked. It is complete.

Thus given a continuous family A'r’ A,r € X V1, one can define the
integral
t
E = { A_dt.
Theorem: It is knc.m that, given any y € E, there exists a
family x(z) such that x(1) € A VT, and

y=[ x(1)dt
o

T,

Y o A A
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Now if y belongs to the boundaxry E' of E, then the corresponding

x(1) bdbelong to the boundary AL of A_ for almost all T.

Geometric subtraction: Given A and B, two subsets belongiug

to K, define
A¥B=D by - D& {x|x+Bcaj.

If this set is no' empty, then it is compact and convex. D is a
function of A and B, D(A,B), but it is not defined for all A

and B. Notice trat Ly its definition D = A x B 1is such thac

D+BcA.

et

Continuity: The question arises of knowirg if this function
D(A,B) is continuous. The answer is that given A end B if

dim(A, B ) =dimL=v,

‘then the function D(A,B) is continuous at A, B

o a—. o
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Lecture 10

We shall use the operations previously defined to find the esti-

mating function in the case where

uelf
Z=c¢cz+Vv-1u cenvex compact cubsets of R
veeg
Completion for z ¢ M M vectorial subspace of R
P - L orthogonal complement of M

it is the projection from R onto L, and as previocusly,

-}
np
=
o
3
e+ ]
O
ne>
2
)
O

Condition for capbture: 1In the first lecture, a condition had been given

under which capturc can occur. We give now another form of the same

{

condition. Let S'r be |
]

. §

»

Our condition is dim . =v V¥V small T > O, or more formally, for
all 7: 0<t1<7T for some '1\', possitiy infinite, and we shall

always consider a T belonging to this interval.

We constiuct the set W_, defining it as
¢

‘T
W_=J s_ar
T o r

The estimating function is ncow defined by means of this set. Con-

sider the inclusion (1), which can be true or not,

T e e o ot RS S e
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Tc o]
(1) e z € VT

and call To the smallest T such that it is verified. We claim

that T(zo) = T,

Remark: I: T, = 0, this means that
nz €W = (o} .

This means that 2z belongs to M, the game is finished, which is

consistent with the result T(zo) = 0.

-

Proof of our claim: We shall first consider the second term:
T iy

o

T T € T < .
W =[sa=[] sdas+f sa=w__+[ s ar,
T o r O xr T-Sr T-E g *

provided that T-€ > O.

Let us now lock at the last integrai:

kS

implies, as seen earlier,

rc

re
Sr+1re Qc e P

It is easy to see that such an inclusion can be integrated,

T T
J (Sr+uech)drcf ne CPdr.
T-€ €

S 1t 18 e S i o e
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From the definition of the algebraic sum it is clear that the inclusion
still holds if one of *he two sets on the left side is replaceda by oue
of its elements.

Notice that v(t) is known for 0 <t < ¢, s0 that v(t-r) is

knovn for T-€ < r < T and belongs to Q. So we can write

T T T T
(2) f 5 .0r + I xev(rr)r c [ ne®Par.
1T-€ T-€ T-€
Let us turn now to the relation (1), =n=e'C z, € V. We can write
it as follows:
_ T T T .
i e zo+f e’ v(t-r)dr € W +J Srd.r-rf x e C v(t-r)dr,
) T-€ T-€ T-€
and making use of {2), we have
TC Y re T ore
(3) xe zo+f xe  v(t-r)dr e'WT_e +f =ne " Par.

T-€ T-£

-This relation is verified for T = T, ;but it might be true for some

smaller 1. let us call =

, the smellest T such thet (3) is true,

T T.
qe 1 re . 1 ro
e zo+f Te v('rl—r)drew_[ _€+f xe - Pdr.

Tl— € 1 —[l.. €

From relation (3) it follows that there exists a function u(‘rl-r) e P
defined on the interval [0,¢] and such that u('rl~r) e P, Vre [T,-&:,'rl]

and such that
'rlc Tl T
e z,+ f
Tl-

A
e re G
nx " v(T,-r)dr e ¥_ _E+f ne  u(T-rldr .

€ l Tl-e R . S
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u('rl-r) is not any element of P, but it is defined by this relation.
Tnis last relation we rewrite as

T.

e 1 - ,
ne 2z +f we [v(t,-r)-u(t,-r)ldrew ,
o 1 1 T,~-E
T,-€ 1
1
and we modify its left side in
(ty-€)e _ N [r-(1y-€))e 1
e 1 (eF2 + ] e [v('rl-r) - n('rl-r) lar} .
Tl-C

Then we meke the change of variable of integration s = r- (Tl- £).
This same term becomes

{7y-g)e € (1y-€)e

£c s ; . s
{e %o+ [ e®C[v{e-s)-u(e-s)3ds] = ne z
o

where z5 is by definition the quentity between braces. It is clear
that 2z, is also tr2 vaiue z(g) of the solution z(t} of the dif-
" ferential equation of the game, with initial value z(0) = 2, and
applying the ccntrols v(t), which was given, and u{t) that we found.
Our re;e'.ult is

(‘tl-—e)c

n e Z

1 €W e

18

This relation means, with our definition of T(z),

T(zl) <t -

Because T is the smailest T for which relatior. (3) hcléds, it is

poscible to see that actually

T(zl) =Ty -

l,

0 r vt e, et
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We now check the relation that a function T{z) must verify to be an

; estimating function

It - = - g
T\zo) T(zl) T, - T +E, -

and because as we have seen, T, < 7

T(zo) - T(zl) > €.

Sc¢ T(z) is an estimating function.
g It can happen that the difference will actually be smaller
than €. .

. Lo

. ."_Re_nﬂ: Our function T{z) is de”ined independently of g,

and the result holds for all € > 0.

T ITTA Y A

! It would be intersting to find what happens for & going te
- zero. It might be possible to find a u according to the second

rule instead of the third, namely, with the knowledge of current

‘e

state and opponeni's control, but not of its control in the future.
May be we could fiiii some bound on €. This question is not solved

yet.

S o SR Ce BN Y
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Lecture 11 [

Before giving an example of use of the previous theory, let us

make some remarks abcut the geomevric subtraction.

Remark: As previously, let Hr be a bell of radius r and
center 0. It is easily seen that

H *% =H if s<=r. -
r—~"8 r-s —

Given a function r(t7), real parameter T, it is easily seer that

t
£ HZ'(T) at = Hf(t)
withi )
o &
£(t) = J r(v)ax.
G

Example of pursuit process.
We consider the example used in the evasion process: In a
-euclidean space E of dimension v > 2, a point x {the pursuer)

and a point y (the eve2der) vary according to the dynamic possibilities:

X+ax=a lzil <o
i"'B&"‘b ﬂﬂfc,

o, By p and v are positive numbers. The game is completed when x=y.
We put this description in the formm o1 a differential game, as was

done earlier, defining the state 2z € R,

z = (21,22,23)

e R TRmTE—— T T - = - = L ane ol haiiidie & o B

- ——
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1

x-y \[
22 = X z] 22 and z3

z3 y ‘/{

The subspaces

M= ((0,2%,23)),

There is an obvious isomorphism between L and E, and L

identified with E thereafter.
as & mapping of R on K.

We heve already shown that

2

> 3 1
,2°) =z

x(zl,z

The operator =« e1c

« e'tc - (l f(T)
. i _ el 2 3y
ne z = we (zo,zo,zo) =

and

Po= x| Il <or()},

where the tvo functions f(t) and

l-e

(1) = o ’

46

are components (not ccordinates) of z.

M and L are defined by

L = [(21,0,0))

#ill be

The projection = will be considered

(zl € B, not L).

. . . ™
, firsl line of the matrix e , is

-e(7))

1, 2 3,
2+ 2 f(1) - z] =(T)

Q. = (x|l <oe(1)},

e{1) are

_51'
g(’() = .]‘_;g_.._

e o
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Remarks about the functions { and g: .
£(0) = g(0) = 0
(1) = &7 g(1) = e PT
£(0) = g(0) =1 .
¥e will also need thezir limit for T -,
ua £(1) =3, lim g(1) =% .
T -0 T S0
Geometrical difference
a _ ’ - 1 -
o= F o¥Q = (x] [ix] <h{1)} = Hh(‘l’) s
g wherg h(1) = o £(1) - o g(1) - )

Because the difference is not defined for h(t) < 0, we must

: ' look at this function.

n(0;=0, h(C)=p-0>0,

‘since, by assumption, we are in the case where the pursuer has

maneuvering superiocrity over the evader: ¢ > ¢

ﬁ(T) -t ~BT

1]
©
4]
1
Q
e

n{x)

"
Q
o
~
o
ll

Qi

one point at most

and looking at the limit
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lim hir) = p_0g
~ . a 5
T -
E we distinguish two cases,
‘f g - -g-> 0 : h{t} is elways positive and greater than some
é ' positive constant for T greater than some positive
3 2
r . value. 3
g - % < 0 : There exists a unique positive 7 such that 3
h(7) =0 and h{(1)>0 for 0<T<7T. .
. Sei W i
—_— T 3
%
* ¥We have
1
. = dr = N -
e L £ S, Hh(T) a sphere,
where
~ T 1
h(7) = [ n(r)ar . 5
° ) 3
3 .
Estimating function ;
. - ]
- . The inclusion =x e"zos WT_ can now be written as an analytical E

expression since both sides are known
llzt + £(1)22 - g('r)z3ii2 < R2(1)
(o} (o] o' - ’

and T is the smallest T for which this inequality holds. By

continuity it is clear that for T, ¥e shall have the exact equality

Ll A
“zi-+f(1°)z§-g(10)zgﬂ = ha(Tb) s T,>0 .

And T(zo) = T, » T, being the smallest root of the above equation.
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which verifies Isaacs' "main equation" (Partial differential equation).
But then it has severil values, and insisting on choosing the lowest
positive one may lea¢ to discontiruities in T and its derivatives.
So the hypotheses on which Isaacs' theory was built do not hold
here. Moreover, ve heve an explicit- solution instead of a partial
differential eguation.
Iet us look at the (ase where the relative value cof the limit

velucities is,

Rlo
\V4
wla

Then h(T) -0, where T — 0o, so that, wiatever be L there exists

e T pesitive such that the equality is verified. So the game shall

always be completed, capture will occur fi . any starting position.
It has been proved by Nikolsky that for a rather restrictive class

of games, containing this one, this estimating function is also optimal.

Remarks: We krow from the general theory developed eariier that

the function T(z) we have computed here is actually an estimating

‘function. We have also given the construction of the best possible u

in the gereral case. In this case we caﬁ give a different, but very
simple, c;nstmction of u which ensures capture in exactly T(zo).
This con:truction will not make use of the knowledge of v at a time
greater than current time. But it will also not take advantage of the

possible "mistakes”of the evader.
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Consider the inclusion "‘_
TC T
ne  z €[ s ar
o
means that there exists a measurable vector function s(r) such that
TC o
. re” z = [ s(r)ar s(r) € s, Vr-
o
Now the definition of S is such that .
Sr + % ech c :rercP,
* which means
s(r¥+neCve zrercP, Vsre S_» Vvvegq,
< -? T ;
' so for any given z, (=> given s(r)) and any given v there exists i
a ue P such that
. - s(r) + nev=nelu.
If in this equality we put for v the evader's centrol v('ro-r) , then 3
- it gives us a pursuit control u(‘ro-r)- Thus we have :
. 3
. s(r)+ne [v('to-r)-u('to-r)] =0 Vr 3
and integrating from zero to Ty taking s out of the integral,
. .
¢ ° re ( :
nle zo+£ e [v('ro~r)-u\'ro-r)]dr) =0,
which means that z('ro) € M. Q.E.D. '
Note that this does not take advantage of possible mistakes of
the wvader. ‘

FON o e




